Gravity Waves and Equatorial Waves Observed by HIRDLS

Joan Alexander¹, Dave Ortland², Alison Grimsdell¹

¹NWRA, CoRA Division, Boulder, CO

²NWRA, Bellevue, WA

- J. Gille, C. Cavanaugh, M. Coffey, C. Craig, T. Eden, G. Francis,
- C. Halvorson, J. Hannigan, R. Khosravi, D. Kinnison, H. Lee,
- S. Massie, B. Nardi, J. Barnett, C. Hepplewhite, A. Lambert, V. Dean

Motivation:

- To validate/improve the treatment of both resolved and parameterized waves in climate and assimilation models.
- In the tropics, these waves drive global circulations (e.g. QBO)

- Tropical waves also affect:
- minimum tropopause temperatures
- cirrus occurrence frequencies

Parcel trajectory results with (top) and without (bottom) including the effects of wave T' [Jensen & Pfister, 2004].

HIRDLS Sampling Patterns

Pre-Launch Planned Global Mode

Post-Launch Reality: Traditional (24°) longitudinal sampling High Resolution (1°) along-track sampling

Latitude

Longitude

- Poorer characterization of tropical wave spectrum
- Optimal gravity wave observing mode

HIRDLS

May 8, 2006 Mountain Wave Events

Gravity Waves in HIRDLS Alexander et al. [2007]

• Allows calculation of Momentum flux ~ $(T')^2 k_{\mu} \lambda_{\tau}$

29-day Mean, May 2006

- After removal of zonal wavenumbers = 0-3
- •Averaged over z = 20-30 km

Gravity Waves in HIRDLS

Alexander et al. [2007]

Single Day 16 May

- Single day shows large amplitude events over Patagonia and SE Asia
- The SE Asia event has a very long horizontal wavelength along the meridional sampling direction, and correspondingly diagnosed with much lower momentum flux than the Patagonia mountain waves.

Fourier Analysis of Asynoptically Sampled Data (Salby, 1982)

The resolved wavenumbers and frequencies (22-day sample) show a cluster of eastward propagating modes.

Fourier Analysis of Asynoptically Sampled Data (Salby, 1982)

The resolved wavenumbers and frequencies (22-day sample) show a cluster of eastward propagating modes:

Zonal Wns = 1-3 Periods = 5-20 days

Latitude / Height Structure of Top 6 Modes Identified in the Fourier Analysis

Reconstructed Time / Height Series Compared to HIRDLS Data

Sum of 7 modes with amplitude > 0.2 K [wavenumber, period(days)]:

[1, 10.8], [1, 21.4], [2, 5.4], [2, 7.2], [2,10.7], [3, 5.4], [3, 7.1]

Idealized T80 Model Comparisons

Meridional Cross-Sections for Wavenumber=2 modes

- Model forced by 0.25°x0.25°
 3-hrly heating derived from TRMM 3B42 rainfall rate product and geostationary IR cloud-top temperatures.
- The model reproduces the observed large scale waves.
- The model further resolves a broad spectrum of waves including gravity waves.

Single Day 16 May Cross-Section Thru SE Asia Event

HIRDLS Compared to Idealized T80 Model of Waves Generated by Convection

- The HIRDLS "SE Asia gravity wave event" appeared in only two orbits.
- Showed no clear phase variations with latitude in the cross-sections.
- The model contains a very similar wave structure analyzed as a zonally propagating wave with wn~10 not resolved in the HIRDLS Fourier analysis.
- The HIRDLS gravity wave momentum flux assumed meridional propagation, and underestimates the flux for this zonal wave by a factor > 2.

Summary

- HIRDLS temperature profiles quantify the properties of atmospheric waves above cloud tops.
- •Global analysis of gravity waves in HIRDLS shows latitudinal trends:
 - Large amplitude waves in the tropics and winter high latitudes
 - Highest momentum fluxes in winter over topography
 - Trend of decreasing horizontal wavelength with latitude
- Near the equator our analysis assigns zonal gravity waves horizontal wavelengths that are too long and momentum fluxes that are too small.
- Idealized global model of waves generated by convection captures some of the key features of waves in HIRDLS.
 - With additional validation, may be used to extend the interpretation to higher wavenumbers and frequencies.

Along-Track: Wavelet Analysis

S-transform analysis of a synthetic vertical temperature profile

Wavelet Analysis of profile series

Phase difference $\Delta \phi$ between adjacent profiles gives:

Horizontal wn = $k \sim \Delta \phi / \Delta x$

Altitude (km)

Ζ